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ABSTRACT
The proliferation of Location-based Social Networks (LB-
SNs) has been rapid during the last year due to the number
of novel services they can support. The main interaction be-
tween users in an LBSN is location sharing, which builds the
spatial component of the system. The majority of the LBSNs
make use of the notion of check-in, to enable users to vol-
unteeringly share their whereabouts with their peers and the
system. The flow of this spatial information is unidirectional
and originates from the users’ side. Given that currently
there is no infrastructure in place for detecting fake check-
ins, the quality of the spatial information plane of an LBSN
is solely based on the honesty of the users. In this paper, we
seek to raise the awareness of the community for this prob-
lem, by identifying and discussing the effects of the presence
of fake location information. We further present a prelimi-
nary design of a fake check-in detection scheme, based on
location-proofs. Our initial simulation results show that if
we do not consider the infrastructural constraints, location-
proofs can form a viable technical solution.
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INTRODUCTION
Location-based Social Networks (LBSN) have attracted a lot
of attention during the last years. While they exist since the
early 2000s (e.g., Dodgeball was founded in 2003), it is only
recently that LBSNs have taken off, mainly due to the ad-
vancements in mobile handheld devices. The latter allow for
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a fairly accurate positioning, thus, forming an ideal platform
for the realization of advanced location sharing applications.

An LBSN has two distinct components: a social network and
a location log for each user. The social part of the system
resembles any other existing online social network, where
friendships are declared and people can interact with their
friends. What differentiates LBSNs for any other digital so-
cial network is the type of interaction that are feasible among
the users. The main feature of this interaction is location
sharing. Users volunteeringly share their location with their
friends (or even with everyone in the system depending on
the privacy settings). This location information can be ei-
ther in the form of a trajectory continually tracked by the
provider (e.g., systems such as Loopt) or in the form of vol-
unteering sharings of the actual place/venue the user is in
through a check-in (e.g., systems such as Foursquare). Some
systems might also offer both alternatives (e.g., Google Lat-
itude). Clearly, the second approach, where locations are
tagged with semantic information (e.g., “I am in the Star-
bucks”) as compared with a geographic trajectory (e.g., spe-
cific latitude/longitude), offers richer data that can enable
novel services. Hence, this is the model that most popular
LBSN utilize. A nice overview of location-based social net-
works and systems in general can be found in [18] for the
interested reader.

In both of the aforementioned models, the flow of the spatial
information is unidirectional. In particular, the user provides
his location to the system, and as a consequence to the rest
of the network. In the above process there is no proof of cor-
rectness for any information provided. However, as He et al.
have shown [8], it is very easy to interfere with the position-
ing system of a mobile device and alter it in order to report
fake coordinates. Moreover, in checkin-based LBSNs the
users do not even have to alter the GPS’ API to forge their
whereabouts; they can simply bypass the automatic localiza-
tion module1 and check-in at a different venue than the one
they actually are. While some LBSNs offer basic schemes to
identify fake check-ins (e.g., the cheater code of foursquare
[1]), their scope is limited (e.g., they do not perform well
when the dishonest user is located fairly close to the venue
he claims to be in).

1Since the accuracy and/or the availability of the GPS can be low,
especially in urban areas, LBSNs allow users to manually enter the
required information if needed.



While in this paper we are not interested into identifying the
reasons behind location cheating, the incentives for adopting
similar behaviors vary and can be present in a high degree.
LBSNs have a strong gaming component and many users are
interested in these mobile games [11]. Hence, they might be
inclined to cheat simply to gain more virtual rewards (e.g.,
more points, badges/pins, etc.). Moreover, while LBSNs
were designed mainly with the objectives of connecting peo-
ple in space, helping them to meet new people in their vicin-
ity, keep track of their own friends and explore new areas,
business-related features and interactions related to mone-
tary gains have recently taken-off. For instance, the owner
of a venue can offer deals to users that check-in his venue
[4]. The majority of these offers (more than 90%) require
multiple check-ins [8]. Hence, a user, say Jack, can create
a number of fake check-ins for unlocking this offer easier,
leading to a monetary loss for the venue owner. In another
context, Jack might also be tempted to share a fake location
with the system in order to provide some sort of “alibi” or
mislead other people with regards to his location.

The contribution of our work is two-fold and can be summa-
rized in the following: (i) Raise the awareness of the commu-
nity for the importance of identifying fake location sharings
in LBSNs. We emphasize on the importance of solving this
problem by discussing the effects of counterfeit spatial in-
formation. (ii) Design of a preliminary system, based on the
primitives of location proofs, for the detection of fake check-
ins. To the best of our knowledge this is the first scheme to
tackle this problem.

The rest of the paper is organized as follows. Section dis-
cusses studies related with our work. Section analyzes pos-
sible effects of the presence of forged check-ins, while Sec-
tion presents the design and evaluation of our preliminary
detection scheme. Finally, Section concludes our work.

RELATED STUDIES
With the increased importance of spatial information for var-
ious applications, location-proofs have gained attention in
the research community during the last years. Denning and
MacDoran [6] describe a location-based authentication sys-
tem where the position at any time is uniquely identified
by a location signature. The signature is created by a lo-
cation signature sensor (LSS) and it is time varying, hence,
making it difficult to be forged. However, this system relies
on a dedicated hardware and requires auxiliary equipments
to strengthen the weak GPS signal in indoor environment.
Saroiu and Wolman [14] design a scheme where location
proofs are handed out by WiFi access points (APs). Each
mobile device signs the APs’ beacons and send them back to
APs. The latter upon reception of the signed beacon creates
a location signature for the mobile user. Zhang et al. [17]
also utilize WiFi infrastructure and design a power modu-
lated challenge-response location verification system. This
mechanism utilizes RF signal strength from multiple APs to
verify whether the claimed location is within the overlap-
ping range of neighbouring APs. Furthermore, Kjærgaard
and Wirz [9] present a clustering approach to detect indoor
flocks of mobile users (i.e., spatio-temporal clusters).

In the context of LBSN, as aforementioned He et al. [8] have
identified the problem of fake check-ins, without providing
any solution to it. Foursquare has developed the cheater
code [1] in an effort to minimize fake spatial information.
The cheater code imposes additional rules on users’ check-
in frequency and speed. However, this mitigates potential
fake check-ins to some extent only, since cheaters can eas-
ily bypass this detection [8]. Furthermore, location learn-
ing schemes can potentially used to enhance the detection of
fake check-ins. For instance, Lian and Xie [10] propose a
scheme to identify the location of a specific check-in based
on primitives of location search. The location identified from
the system can then be compared with the one claimed from
the user. However, this scheme will be able to identify a
number only of non-sophisticated fake check-ins (e.g., users
that check-in to a remote locale without altering their GPS
coordinates).

Our preliminary system design, is based on the primitives
of location-proofs and can be complementary to efforts such
as the cheater code. The key point is that a cheating user,
say Jack, while being able to fake his GPS coordinates, he
cannot do the same with the wireless channel’s propagation
characteristics. In brief, we utilize the notion of location sig-
nature using WiFi infrastructure enhancing it with the notion
of flocks for identifying users that are not at the location (at
the time) they claim to be at.

THE EFFECTS OF FAKE CHECK-INS
Traditionally, social information systems and information
quality have followed disjoint paths. However, the presence
of low quality of information (QoI) results in a decreased
value for the specific platform. For instance, a very repre-
sentative type of social information systems, vulnerable to
low QoI is the Q&A social networks [16] [13]. In these sys-
tems, people post questions that can be answered from their
peers, and are focused on providing an efficient platform for
enabling the crowdsourcing nature of the underlying system.
However, no care is taken for the actual quality of the an-
swers provided. In the case of Q&A networks, feedback
from users can be roughly used as a metric of the quality of
the answer provided.

While similar issues exist related to the location sharing in
LBSNs, there are no systems to date that are able to filter
fake check-ins to a great extent. However, the existence of
forged spatial information in the network can have signifi-
cant effects in a wide spectrum of the underlying function-
alities. In this section we will discuss two representative ex-
amples; one related to the effects on participating businesses
and one related to the services possibly offered by the LBSN
provider.

Monetary Losses: LBSNs have recently evolved into an in-
expensive marketing channel for local businesses. Users can
obtain special offers by checking-in at participating venues.
This gives the latter an opportunity to be advertised, in an in-
expensive way, only to people that actually have the potential
to visit them. A traditional advertisement, which targets the
majority of the population is expensive because of the vol-
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SUPERCUTS
4815 Centre Ave Ste 103 (near Millvale Ave)
Salon / Barbershop  • 0.9 mi  • 1 tip

Ask for Emily – Samir P.

People who go to CVS & Home Depot tend to go here.

2 Save Done

APlus at Sunoco
121 N. Negley Avenue
Coffee Shop  • 0.5 mi

This spot is popular on foursquare

1 Save Done

Starbucks
5310 Liberty Ave. (Inside Courtyard By Marriott)
Coffee Shop  • 0.5 mi  • 3 tips  • See menu

Even though it is located near a hotel
(Marriott) they are open till 10pm. – Anthony
C.

You've been here 5 times

1 Save Done

Newbie Special
Get $3 off your haircut when you check in to Supercuts for the
first time!

Unlocked on your 1st check-in

Offer must be used during your first visit and can only be redeemed once.
Salon n code: N40 $3 off cut - 4square.

Loyalty Special
Get $5 off your haircut every third visit!

Unlocked every 3 check-ins

Limit one discount per 90-day period. Discount unlocked must be used
same day as check in. Salon n code: N41 $5 off cut - 4square.Figure 1. An example of a special offer requiring 3 check-ins.

ume of its target mass. However, only a percentage of the
people exposed to it can actually benefit from the advertised
good/service (e.g., people that are spatially located nearby).

Special deals lead to a temporary loss for the locale offer-
ing it. This is especially true for one-time deals, such as
the ones offered in Groupon [5]. The rational behind these
offers is that people visiting the venue will come back and
hence, this will make up for the temporary loss. Hence, par-
ticipating venues in LBSN offers might require more than
one visit in an attempt to minimize the associated loss. For
instance, Figure 1 provides an example of a special offer,
which requires 3 check-ins. If the cost of the offer is c (in
our example c = $5), the locale’s gain would be reduced by
c for every visit if the deal was offered to every check-in. By
requiring three check-ins the gain is only reduced by

c

3
for

every visit.

Jack who wants to unlock this offer but does not want to have
to go three times to the venue and spend on average s − c

3
per visit, where s is the average expenditure of a client in
the locale, can game the system and create two initial fake
check-ins. This will enable him be present in the locale only
once and unlock the deal. His expenditure will be only s−c,
and the venue owner will have a reduced gain (the cost of the
offer will again be c per visit). Assuming that s = $20 in our
example, the locale’s gain is reduced by $5/client instead of

the
5

3
= $1.6/client that was the target, while the cost per

visit for Jack is reduced to $15 instead of 20 − 5

3
= $18.4.

Hence, it is evident that there can be monetary losses for
businesses that want to use LBSNs as an advertisement chan-
nel. A detection system should be developed in order to filter
forged check-ins and establish a secure way for venues of-
fering deals. If the latter is not in place, business owners will
have a reduced incentive to participate in similar systems.

Degraded Services: Recently, Foursquare - the largest
LBSN to date - launched a novel recommendation engine,
which considers check-ins from all users in order to pro-
vide recommendations [2] [3]. This engine takes into ac-
count user’s check-ins, friend’s check-ins, venue’s check-ins
and many other factors in order to provide suggestions. It
should be evident that noisy data will not yield high qual-
ity service. Therefore, not only should LBSNs filter fake
check-ins that can harm businesses (as aforementioned), but
also identify any kind of fake check-ins (e.g., from gamers
that simply want to gain as many virtual rewards as possible
by checking-in to venues they have never been). Unless only
“True” data are used from the LBSN provider to provide ser-
vices, the latter will be degraded and of low quality.

Hence, it is evident that fake check-in detection is crucial to
the long-run success of the LBSN paradigm. In the follow-
ing section, we present our initial efforts on this problem.

FAKE CHECK-IN DETECTION
Cheating Model: In our work we consider two types of fake
check-ins; (i) users can modify their GPS API and check-in
a venue that is located far away and (ii) users that check-
in to a locale that is nearby even if they are not physically
present in it. Note here, that approaches such as the cheater
code would not be able to detect any of them. However, the
latter would be able to detect users that do not alter their GPS
API and check-in to a far away venue, and thus, we do not
consider it in our work. A realistic assumption we make for
this study is that the numbers of fake check-ins are less than
true check-ins (assumption 1). In addition, true check-ins
are spatially contained within the premises of a venue, while
fake check-ins are distributed over a larger area outside the
latter (assumption 2).

Detection Algorithm: To defend against fake check-ins,
every mobile user needs to provide location evidence to the
LBSN provider along with his check-in information. For
issuing location evidence, the mobile device collects bea-
con frames sent by nearby WiFi APs and measures the re-
ceived signal strength (RSS). This provides a vector RSS =
[rss1 rss2 ... rssn], which combined with a vector con-
taining the unique MAC addresses of each AP (MAC =
[mac1 mac2 ... macn]) forms the location proof which is
forwarded to the LBSN provider with the check-in.

For location verification of a check-in of user u at locale
l, the LBSN provider utilizes the recent k proofs of users
claiming presence in l. Then spatial clustering on the RSS
space is performed using the density clustering algorithm
DBSCAN [7] as described in what follows. Having a set
of points (check-ins in our case) DBSCAN first calculates
the neighborhood N(p) for each point p. The latter con-
sists of all points within distance ε from p (the distance is
calculated over the RSS vectors). The algorithm proceeds
by examining whether it can merge the neighborhood to an
existing cluster. The latter is possible if the neighborhood
shares at least one common point to a cluster. Otherwise,
if |N(p)| ≥ MinPts a new cluster is created. However,
if |N(p)| < MinPts, p with its neighborhood are consid-
ered “noise”. Figure 2 depicts the high level approach of

clusters noiseCheck-in points

Density

Clustering

Figure 2. Pictorial representation of spatial clustering (MinPits=3).



DBSCAN. Clearly, ε and MinPts are two parameters that
dictate the clusters and “noise” points identified.

In our context, considering the points defined by the RSS
vectors of the check-ins claimed in a specific venue, we ex-
pect the points originating within the venue to be closer, thus
belonging to the same cluster, as compared to those created
outside the locale, due to the different wireless signal prop-
agation path. In other words, real and fake check-ins will
not be clustered together. Furthermore, we expect the fake
check-ins to form clusters of lower cardinality (assumption
1) and/or be “noise” points (assumption 2).

The LBSN provider keeps track of the check-ins to a specific
venue l and utilizes the latest k of them. Initially, when there
are less than k prior check-ins none of them is classified.
Once k of them are obtained spatial clustering is applied.
Based on our discussion above, the cluster that includes the
most points is flagged as “True” check-ins. The rest points
(i.e., check-ins) are classified as “Fake”.

Let us now consider Jack claiming to be in locale l. Us-
ing a sliding window approach, the k latest classified check-
ins (say set S) together with that of Jack form the input to
the density clustering. There are two possibilities for Jack’s
check-in; either classified as “noise” or belong to a cluster.
In the former case the check-in is regarded as “Fake” (as-
sumption 2). In the latter case, if the corresponding point
belongs to the cluster with the largest cardinality then the
check-in is flagged as “True”, otherwise as “Fake” (assump-
tion 1).

Note here that, while assumptions 1 and 2 might hold in the
long run and over the total check-in set, it might be the case
that they do not hold true for a subset of them (i.e., a specific
set S). In order to avoid cascades of misclassification, every
time a new check-in at l arrives we perform a reclustering.
However, note that we only decide for the latest check-in in
time; there is currently no feedback control for reinforcing
previous check-ins classification.

One could use all the check-in history of a locale in order
to apply the density clustering. However, evidence and RSS
vectors might become stale due to the temporal variations of
the wireless channel, as well as changes in the WiFi deploy-
ments. Exactly these are the factors that can provide robust-
ness of our approach to replay attacks, where users record
the location proofs at time t1 and provide them with a fake
check-in at time t2.

Simulation and Evaluation: To evaluate our design, we
simulate the check-in process over a virtual grid of locales.
Venues are grouped into blocks of 6 and arranged in a 2D
plane separated by streets. Venues within a block are tangent
and separated by walls. 90% of venues are equipped with a
WiFi access point. Our simulations include 24 venues (i.e.,
4 blocks) and 20 users.

LBSN users follow the RANK model [12] to decide the next
destination to check in. According to this model, the prob-

ability a user check in venue v ∈ U from original venue
u ∈ U is defined as:

Puv =
ranku(v)

−α∑
u∈U

ranku(v)
−α (1)

where,

ranku (v) = |{w ∈ U : d (u,w) < d (u, v)}| (2)

d(u,w) is the distance between locales u and w. We have
also usedα = 0.84 [12]. For a user who is truthfully checking-
in to locale l, his actually position within l is randomly cho-
sen. A user who performs a fake check-in, will be positioned
randomly outside the venue, where the probability density of
the distance follows an exponential distribution.

We also use a wireless signal propagation model for the RSS
values recorded from the users. In particular, we use the
Attenuation Factor Model [15]:

RSS = P (d0) + 10n log

(
d

d0

)
+ nw ·W + v, (3)

where, P (d0) (dBm) is the signal strength at distance d0, n
is the path loss exponent, W is an wall attenuation factor
and nw is the number of obstacles along the direct signal
propagation path between transmitter and receiver, and v is
Gaussian withN ∼

(
u, σ2

)
. In our simulations, we set d0 =

1m, P (d0) = −30dBm, n = −2.4, W = −15dBm and
u = 0. σ is varied as described below.

We evaluate the performance of our fake check-in detection
scheme with regards to the variations of the wireless chan-
nel as captured by the deviation σ, the percentage r of actual
fake check-ins present in the system and different window
sizes k. We set MinPts=3. ε determines the tradeoff be-
tween the probability of detection (a “Fake” check-in cor-
rectly classified) and false alarm (a “True” check-in classi-
fied as “Fake”) and is used as the parameter for obtaining
our results.

Figure 3(a) depicts the detection and false alarm probabili-
ties for different σ (k = 8, r = 20%). Each point in the
curve is obtained for a different ε. As we can see the per-
formance is much better when the wireless channel is stable.
However, in a stable environment replay attacks can be more
successfully since location proofs do not change over time.
Nevertheless, even in a highly variable environment (σ = 6),
the algorithms performs efficiently and is also more robust to
replay attacks.

Figure 3(b) presents the performance of our scheme for dif-
ferent k (σ = 4 and r = 20%). Again each point on the
curves is obtained for a different threshold ε. As one might
have expected the more points we input to the clustering al-
gorithm, the more accurate detection it can perform.

Finally, Figure 3(c) presents the results for a varying per-
centage of fake check-ins r (σ = 4, k = 8). We can see that
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Figure 3. ROC curves for our detection scheme.

the system performs better when r is small. When the latter
increases, density clustering performance can be degraded,
especially during the initialization phase, where the cluster
including the most points is considered as the “True”.

In all of the above results as we increase ε we move from
the top right of the curve to the bottom left. Larger ε trans-
lates to higher probability that a point can be connected to
a cluster. This, decreases the detection probability since it
is easier for a fake check-in to fall into a “True” cluster, but
also decreases the probability of false alarm.

Future directions: In the above we have presented our ini-
tial approach towards identifying fake check-ins. We seek to
further extend our approach by examining other clustering
algorithms and implementing a prototype system that would
enable evaluation in a real environment. In particular, we
want to examine: (i) possibilities for feedback control as
aforementioned and (ii) the robustness of our approach to
replay attacks. Finally, while the assumption of fake users
being less than the real users is realistic, we opt to investi-
gate different approaches whose performance is not affected
by the proportion of the fake users.

CONCLUSIONS
In this work we have studied the problem of fake check-in
information in LBSNs. We have argued for the importance
and cruciality of this issue by analyzing possible effects from
counterfeit spatial information. We have further designed
and evaluate via simulations a detection system combining
clustering algorithms and primitives of location proofs. We
believe that our study will raise the awareness of the LBSN
community and stimulate further research on the topic.
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