LBSNRank: Personalized PageRank on Location-based Social Networks

Zhaoyan Jin, Dianxi Shi, Huining Yan, Quanyuan Wu, Hua Fan

National University of Defense Technology
Outline

- Scenario
- LBSNRank
 - Background;
 - Problem definition;
 - LBSNRank algorithm.
- Dataset
- Experimental Evaluation
- Conclusion and Future Work
Scenario

As a traveler, you are prepared to visit the Great Wall in Beijing:

- In advance, you want to find some influential people in that area;
- After that, you may also visit some other popular places nearby.
Background

- A simple LBSN;
The LBSNRank problem

As time goes on, the location histories of users change, and thus the rankings of locations and users change, too. So

- How to decide the popularity of a location?
- And how to decide the influence of a user in a specific location?
The LBSNRank problem

Ranking of a user:

Definition 1. Given a social graph G and its corresponding location history L_G, the ranking score of a node u, in location p between t_1 and t_2 with the place-timestamp pairs $l_{u,p}(t_1, t_2) = \{(t_i, p) | t_1 \leq t_i \leq t_2\}$, is decided by its personalized PageRank: $(r_b > r_a)$
The LBSNRank problem

Ranking of a location:

Definition 2. The ranking of a location p in the period between t_1 and t_2 is proportional to the number of visitors, the ranking and visited times of each visitor, that is:

$$r_{11} = 2r_a + r_b + r_c$$
The LBSNRank algorithm

1. Determining the location set S_p that will be preprocessed;
2. Computing the ranking of the location p in S_p;
3. Computing the rankings of people for each location p in S_p, and going to step 1 for next iteration.
The LBSNRank algorithm

- Node content changing \rightarrow node rank changing (place) \rightarrow place rank changing \rightarrow S_p changing.

<table>
<thead>
<tr>
<th></th>
<th>P1 rank</th>
<th>P2 rank</th>
<th>P3 rank</th>
<th>P4 rank</th>
<th>...</th>
<th>Pm rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>V_2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>...</td>
<td>7</td>
</tr>
<tr>
<td>V_3</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>...</td>
<td>6</td>
</tr>
<tr>
<td>V_4</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>...</td>
<td>7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>V_n</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>
Dataset

To evaluate our method in a real LBSN, we have crawled the Dianping website to collect a dataset of users, their social links and checkin histories.

Table 1. Statistics of the Dianping Dataset

<table>
<thead>
<tr>
<th></th>
<th># users</th>
<th># links</th>
<th># checkins</th>
</tr>
</thead>
<tbody>
<tr>
<td># cities</td>
<td>204,074</td>
<td>926,720</td>
<td>2,730,072</td>
</tr>
<tr>
<td># districts</td>
<td>347</td>
<td>1,691</td>
<td>313,565</td>
</tr>
<tr>
<td># POIs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dataset

- Location-Checkin Distribution
Experimental Evaluation

- Experimental Setup

 We implement the LBSNRank algorithm in Java on top of the Hadoop platform. Our experiments are executed on a cluster of 20 nodes, where each node is a commodity machine with a 2.16GHz Intel Core 2 Duo CPU and 1GB of RAM, running CentOS v6.0.
Experimental Evaluation

- Efficiency Evaluation

Figure 5. Comparison of Execution Time, where $\alpha = 0.1$ is the location ratio that we preprocessed offline
Experimental Evaluation

- Efficiency Evaluation

Figure 6. the Subgraph-Time Distribution
Experimental Evaluation

- Hit Rate Evaluation

Figure 7. Hit Rate Comparison, where $\alpha = 0.1$ is the location ratio that we preprocessed offline
Conclusion and Future Work

- **Conclusion:**
 - We study the problem of LBSNRank;
 - We propose the LBSNRank algorithm for rapid updates of users’ locations;
 - We have crawled a dataset from the Dianping website;
 - We evaluate our experiments on Hadoop.

- **Future Work:**
 - How to answer users’ queries timely with up-to-date results.
Thank you!

More information:
ZhaoYan Jin
jinzhaoyan@163.com